If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+6y-7=0
a = 2; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·2·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*2}=\frac{-6-2\sqrt{23}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*2}=\frac{-6+2\sqrt{23}}{4} $
| (X^2)=(7x+44) | | 37+3r=-4R-5 | | –2+4u=–17.04 | | 46-z=23 | | 3+4n= | | -63+7x=4x+33 | | 6x-10=-90 | | 7m-10=3m-2 | | –21z+12=–27z | | 5=2+p | | 9(x-16)+3.4x=4+9.3x | | -12-9=3w | | 7x=16=3x+24 | | 2(x-9)-4=-4(-3x+4)-x | | 53=(5+4x) | | -8z+96=9z+-6 | | 4x+36=5x+20=9x-2 | | 8y+51=-9y | | 4(x-5)=19 | | 4x+36=5x+20 | | 35x+1725x-44=44(40x+11) | | 3/2=8/y | | 3(5x+2)=8x+2(x+3)+5x | | 10x+20=5x+35 | | y+5y-50+3y+5=180 | | 2(m+4)=32 | | 89+9p=4+8(7p-7) | | -107+15x=61+8x | | -5y+18=3(y-2) | | -6w+3(w+7)=6 | | 514+9w=-9w+-5(9w+-2) | | -8(w+2)=-3w+9 |